Federal Univesity of Technology – Paraná (UTFPR)

A New Predictor-Corrector Method for Optimal Power Flow

Roy Wilhelm Probst

27-28 April, 2015 - Campinas, Brazil

Linear Programming Nonlinear Programming Complete PC (CPC)

Affine-Scaling and Central Path Methods

$$\begin{array}{ll} \min & c^t x\\ \text{s.t.} & Ax = b\\ & x \ge 0 \end{array}$$

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{t} & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^{t}z \\ -XZu \end{bmatrix}$$

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{t} & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^{t}z \\ \mu u - XZu \end{bmatrix}$$

Linear Programming Nonlinear Programming Complete PC (CPC)

Affine-Scaling and Central Path Methods

$$\begin{array}{ll} \min & c^t x \\ \text{s.t.} & Ax = b \\ & x \ge 0 \end{array}$$

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{t} & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^{t}z \\ -XZu \end{bmatrix}$$
or

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{t} & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^{t}z \\ \mu u - XZu \end{bmatrix}$$

Linear Programming Nonlinear Programming Complete PC (CPC)

Predictor-Corrector Method

$$\begin{array}{ll} \min & c^t x\\ \text{s.t.} & Ax = b\\ & x \ge 0 \end{array}$$

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^t & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta \tilde{x} \\ \Delta \tilde{y} \\ \Delta \tilde{z} \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix}$$

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{t} & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta \hat{x} \\ \Delta \hat{y} \\ \Delta \hat{z} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \mu u - \Delta \tilde{X} \Delta \tilde{Z} u \end{bmatrix}$$

Linear Programming Nonlinear Programming Complete PC (CPC)

PC Method for Nonlinear Programming

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) = 0 \\ & x \ge 0 \end{array}$$

$$\begin{bmatrix} \nabla_{\mathsf{x}}g(\mathsf{x}) & 0 & 0\\ \nabla_{\mathsf{xx}}^{2}\mathcal{L}(\mathsf{x},\mathsf{y},\mathsf{z}) & \nabla_{\mathsf{x}}g(\mathsf{x})^{t} & I\\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta \tilde{\mathsf{x}}\\ \Delta \tilde{\mathsf{y}}\\ \Delta \tilde{\mathsf{z}} \end{bmatrix} = \begin{bmatrix} \mathsf{r}_{1}\\ \mathsf{r}_{2}\\ \mathsf{r}_{3} \end{bmatrix}$$

$$\begin{bmatrix} \nabla_{\mathsf{x}}g(\mathsf{x}) & 0 & 0\\ \nabla^2_{\mathsf{x}\mathsf{x}}\mathcal{L}(\mathsf{x},\mathsf{y},\mathsf{z}) & \nabla_{\mathsf{x}}g(\mathsf{x})^t & I\\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta \tilde{\mathsf{x}}\\ \Delta \tilde{\mathsf{y}}\\ \Delta \tilde{\mathsf{z}} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \mu u - \Delta \tilde{\mathsf{X}} \Delta \tilde{\mathsf{Z}} u \end{bmatrix}$$

Linear Programming Nonlinear Programming Complete PC (CPC)

PC Method for Nonlinear Programming

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) = 0 \\ & x \ge 0 \end{array}$$

$$\begin{bmatrix} \nabla_{x}g(x) & 0 & 0\\ \nabla_{xx}^{2}L(x,y,z) & \nabla_{x}g(x)^{t} & I\\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta \tilde{x}\\ \Delta \tilde{y}\\ \Delta \tilde{z} \end{bmatrix} = \begin{bmatrix} r_{1}\\ r_{2}\\ r_{3} \end{bmatrix}$$
$$\begin{bmatrix} \nabla_{x}g(x) & 0 & 0\\ \nabla_{xx}^{2}L(x,y,z) & \nabla_{x}g(x)^{t} & I\\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta \tilde{x}\\ \Delta \tilde{y}\\ \Delta \tilde{z} \end{bmatrix} = \begin{bmatrix} 0\\ \mu u - \Delta \tilde{X} \Delta \tilde{Z} u \end{bmatrix}$$

Optimal Power Flow Problem Computational Experiments Conclusions Linear Programming Nonlinear Programming Complete PC (CPC)

Complete PC – Corrections

$$\begin{array}{ll} \min & x^t H x \\ \text{s.t.} & X A x = b \\ & x \ge 0 \end{array}$$

$$\begin{aligned} XZu &= 0\\ Z\Delta x + X\Delta z &= -XZu\\ (X + \Delta X)(Z + \Delta Z)u &= \Delta X\Delta Zu \end{aligned}$$

Optimal Power Flow Problem Computational Experiments Conclusions Linear Programming Nonlinear Programming Complete PC (CPC)

Complete PC – Corrections

$$\begin{array}{ll} \min & x^t H x \\ \text{s.t.} & X A x = b \\ & x \ge 0 \end{array}$$

$$\begin{aligned} XZu &= 0\\ Z\Delta x + X\Delta z &= -XZu\\ (X + \Delta X)(Z + \Delta Z)u &= \Delta X\Delta Zu \end{aligned}$$

Optimal Power Flow Problem Computational Experiments Conclusions Linear Programming Nonlinear Programming Complete PC (CPC)

Primal Corrections

$$\begin{array}{ll} \min & x^t H x \\ \text{s.t.} & X A x = b \\ & x \ge 0 \end{array}$$

$$\begin{array}{rcl} XAx - b &=& 0\\ (XA + diag(Ax))\Delta x &=& b - XAx\\ (X + \Delta X)A(x + \Delta x) - b &=& \Delta XA\Delta x \end{array}$$

Optimal Power Flow Problem Computational Experiments Conclusions Linear Programming Nonlinear Programming Complete PC (CPC)

Dual Corrections

$$\begin{array}{ll} \min & x^t H x \\ \text{s.t.} & X A x = b \\ & x \ge 0 \end{array}$$

$$2Hx + A^{t}Yx + YAx = 0$$

$$(2H + A^{t}Y + YA)\Delta x + (A^{t}X + diag(Ax))\Delta y = -2Hx - A^{t}Yx - YAx$$

$$\cdots = A^{t}\Delta Y\Delta x + \Delta YA\Delta x$$

Linear Programming Nonlinear Programming Complete PC (CPC)

Complete Predictor-Corrector Method

$$\begin{array}{ll} \min & x^t H x \\ \text{s.t.} & X A x = b \\ & x \ge 0 \end{array}$$

$$\begin{bmatrix} XA + diag(Ax) & 0 & 0\\ 2H + YA + A^{t}Y & A^{t}X + diag(Ax) & I\\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta \tilde{x} \\ \Delta \tilde{y} \\ \Delta \tilde{z} \end{bmatrix} = \begin{bmatrix} r_{1} \\ r_{2} \\ r_{3} \end{bmatrix}$$

$$\begin{bmatrix} \cdots & 0 & 0 \\ \cdots & \cdots & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \Delta \hat{x} \\ \Delta \hat{y} \\ \Delta \hat{z} \end{bmatrix} = \begin{bmatrix} -\Delta \tilde{X} A \Delta \tilde{X} u \\ -\Delta \tilde{Y} A \Delta \tilde{X} u - A^{t} \Delta \tilde{Y} \Delta \tilde{X} u \\ \mu u - \Delta \tilde{X} \Delta \tilde{Z} u \end{bmatrix}$$

Example Model

IEEE 30 bus system

$$T_k = e_k + jf_k$$

- e_k : Voltage Real part
- f_k : Voltage Complex part
- *P_k* : Active Power liquid injection
- Q_k : Reactive Power liquid injection

Example Model

Model

$$\begin{array}{ll} \min & e^t G e + f^t G f \\ \text{s.t.} & P_k(e,f) + P_{C_k} - P_{G_k} &= 0 \quad \forall k \in C \\ & Q_k(e,f) + Q_{C_k} - Q_{G_k} &= 0 \quad \forall k \in C \\ & (v_k^{\min})^2 \leq V_k(e,f) \leq (v_k^{\max})^2 & \forall k \in N \\ & P_k^{\min} \leq P_k(e,f) \leq P_k^{\max} & \forall k \in G \\ & Q_k^{\min} \leq Q_k(e,f) \leq Q_k^{\max} & \forall k \in R \end{array}$$

where:

$$P = EGe + FGf + FBe - EBf$$

$$Q = FGe - EGf - EBe - FBf$$

$$V = Ee + Ff$$

Example Model

CPC Corrections

$$\hat{r}_{1} = \left[\begin{array}{c} \nabla_{x} P(\Delta \tilde{x})^{t} \Delta \tilde{y}_{\rho} + \nabla_{x} P(\Delta \tilde{x})^{t} \Delta \tilde{z}_{1_{\rho}} - \nabla_{x} P(\Delta \tilde{x})^{t} \tilde{z}_{2_{\rho}} \\ \nabla_{x} Q(\Delta \tilde{x})^{t} \Delta \tilde{y}_{q} + \nabla_{x} Q(\Delta \tilde{x})^{t} \Delta \tilde{z}_{1_{q}} - \nabla_{x} Q(\Delta \tilde{x})^{t} \tilde{z}_{2_{q}} \end{array} \right]$$

$$\hat{r}_{2} = \begin{bmatrix} \Delta \tilde{S}_{1_{v}} \Delta \tilde{z}_{1_{v}} - \mu u \\ \Delta \tilde{S}_{1_{p}} \Delta \tilde{z}_{1_{p}} - \mu u \\ \Delta \tilde{S}_{1_{q}} \Delta \tilde{z}_{1_{q}} - \mu u \end{bmatrix} \quad \hat{r}_{3} = \begin{bmatrix} \Delta \tilde{S}_{2_{v}} \Delta \tilde{z}_{2_{v}} - \mu u \\ \Delta \tilde{S}_{2_{p}} \Delta \tilde{z}_{2_{p}} - \mu u \\ \Delta \tilde{S}_{2_{q}} \Delta \tilde{z}_{2_{q}} - \mu u \end{bmatrix}$$

$$\hat{r}_{4} = \begin{bmatrix} V(\Delta \tilde{x}) \\ P(\Delta \tilde{x}) \\ Q(\Delta \tilde{x}) \end{bmatrix} \quad \hat{r}_{5} = \begin{bmatrix} V(\Delta \tilde{x}) \\ P(\Delta \tilde{x}) \\ Q(\Delta \tilde{x}) \end{bmatrix} \quad \hat{r}_{6} = \begin{bmatrix} -V(\Delta \tilde{x}) \\ -P(\Delta \tilde{x}) \\ -Q(\Delta \tilde{x}) \end{bmatrix}$$

Example Model

CPC Corrections (cont.)

where:

$$P(\Delta \tilde{x}) = \Delta \tilde{E}G\Delta \tilde{e} + \Delta \tilde{F}G\Delta \tilde{f} + \Delta \tilde{F}B\Delta \tilde{e} - \Delta \tilde{E}B\Delta \tilde{f}$$

$$Q(\Delta \tilde{x}) = \Delta \tilde{F}G\Delta \tilde{e} - \Delta \tilde{E}G\Delta \tilde{f} - \Delta \tilde{E}B\Delta \tilde{e} - \Delta \tilde{F}B\Delta \tilde{f}$$

$$V(\Delta \tilde{x}) = \Delta \tilde{E}\Delta \tilde{e} + \Delta \tilde{F}\Delta \tilde{f}$$

$$\nabla_{x}P(\Delta \tilde{x}) = \begin{bmatrix} \Delta \tilde{E}G + \Delta \tilde{F}B + diag(G\Delta \tilde{e} - B\Delta \tilde{f}) \\ \Delta \tilde{F}G - \Delta \tilde{E}B + diag(G\Delta \tilde{f} + B\Delta \tilde{e}) \end{bmatrix}$$

$$\nabla_{x}Q(\Delta \tilde{x}) = \begin{bmatrix} \Delta \tilde{F}G - \Delta \tilde{E}B - diag(G\Delta \tilde{f} + B\Delta \tilde{e}) \\ -\Delta \tilde{E}G - \Delta \tilde{F}B + diag(G\Delta \tilde{e} - B\Delta \tilde{f}) \end{bmatrix}$$

Example Model

OPF using Cartesian coordinates

- Quadratic objective function
- Quadratic constraints
- Constant Hessian
- Nonlinear corrections in all optimality conditions

Computational Experiments Test cases Results

Computational Experiments

- MATLAB 7.8 (R2009a)
- Windows XP
- Intel Core 2 Quad Q9550 2,83 GHz
- 3,23 GB of RAM

Computational Experiments Test cases Results

Power systems test cases

	Buses and lines						
System	<i>N</i>	A	R	C	M		
IEEE14	14	5	5	9	20		
IEEE30	30	6	6	24	41		
IEEE118	118	54	54	64	186		
BRAZIL	2257	201	201	2056	3509		

Computational Experiments Test cases Results

Iteration count and CPU time

 $v_k \in [0.90, 1.10]$

		Iterations			CPU Time	
System	PD	PC	CPC	PD	PC	CPC
IEEE14	11	11	8	0.03	0.03	0.02
IEEE30	12	9	8	0.04	0.03	0.03
IEEE118	17	17	15	0.44	0.46	0.41

Computational Experiments Test cases Results

Iteration count and CPU time

 $v_k \in [0.95, 1.05]$

		Iterations			CPU Time	
System	PD	PC	CPC	PD	PC	CPC
IEEE14	12	10	9	0.03	0.02	0.02
IEEE30	12	9	9	0.04	0.03	0.03
IEEE118	23	24	18	0.60	0.65	0.49

Computational Experiments Test cases Results

Active constraints v_k at optimal solution

	$v_k \in [0.90, 1.10]$		$v_k \in [0.95, 1.05]$		
System	v ^{max}	v^{min}	v ^{max}	v^{\min}	
IEEE14	0	0	0	0	
IEEE30	1	0	1	0	
IEEE118	0	0	1	10	

Computational Experiments Test cases Results

Iteration count and CPU time

BRAZIL system

	Iterations			CPU Time		
$\sum P^{\max} / \sum P_C$	PD	PC	CPC	PD	PC	CPC
1.10	26	26	17	80.61	83.30	55.46
1.15	24	28	16	74.39	90.68	52.41
1.20	20	35	18	62.59	113.59	58.99

Conclusions

Conclusions

- Quadratic objective function and constraints
 - OPF Problem
- Complete Predictor-Corrector
 - Nonlinear Corrections
- Robustness and Speed
 - Heuristic